一、教学目标
知识与技能
进一步掌握用方程解决实际问题的方法,提高分析问题和解决问题的能力。
过程与方法
经历“探究2”的活动,激发学生的学习潜能,促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学思想方法。
情感态度与价值观
发展学生勇于探究、积极地参与讨论,合作交流意识,在“建模”中感受数学的应用价值。
二、重点难点
重点理解和掌握基本的数学知识、技能、数学思想方法,会用一元一次方程解决实际问题。
难点
列一元一次方程表示问题中的数量关系。
三、学情分析
上一节课,学习了“销售中的盈亏”问题,使学生进一步感受到一元一次方程作为实际问题的数学模型的作用.这节课的关键是明确问题中的数量关系,找出等量关系.
四、教学过程(本文来自优秀教育资源网淘.教.案.网)设计
教学环节问 题 设 计师 生 活 动备注
情境创设
上一节课,我们探究了“销售中的盈亏”问题,使我们进一步感受到一元一次方程作为实际问题的数学模型的作用.本节课我们再探究一个农业生产中的一个较复杂的问题。
提出问题,引起学生学习的兴趣。
自主探究
某村去年种植的油菜籽亩产量达160千克,含油率为40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。
(1)今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜植种面积是多少亩?(2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去、今两年油菜种植成本与将菜油全部售出所获收入。 教师提出问题
组织学生分四人小组讨论、探究。
(1)设今年种植油菜x亩,则去年种植油菜(x+44)亩.
由上面基本等量关系,得,
去年产油量=160×40%×(x+44);
今年产油量=(160+20)×(40%+10%)x;
根据今年比去年产油量提高20%,列方程:
(160+20)×(40%+10%)x=(1+20%)×160×40%×(x+44)
90x=76.8(x+44)
13.2x=3379.2
x=256
因此今年油菜种植面积是256亩。
(2)去年油菜种植成本为210(x+44)=210×300=63000(元)
售油收入为 6×160×40%×300=115200(元).
售油收入与油菜种植成本差为115200-63000=52200(元)
今年油菜种植成本为210x=210×256=53760(元)
售油收入为 6×180%×50%x=6×180×50%×256=138240(元)
138240-53760=9240(元)
今年比去年售油收入增加了
138240-115200=23040(元)
今年比去年种植油菜纯收入增加了32280元。
首先让学生明确“含油率”、“10个百分点”、“产油量”等词的含义,分析问题中的基本等量关系.在学生充分思考,交流后,小组派代表介绍小组的解题方法。
分析:问题中有基本等量关系。