《奥赛天天练》第25讲《植树问题》、第26讲《上楼梯与植树》,知识原理是一样的,都是应用一一间隔的规律解决问题。
一一间隔的规律是指:两个不同的物体一一间隔地排成一行,如果两端的物体相同,则排在两端的物体比中间另一种物体多一个;如果两端的物体不同,则两种物体的个数相同;如果两个不同的物体一一间隔地排成一个封闭图形,两种物体的个数也是相同的(把封闭图形从任意一个点剪开展开,就可以得到与第二种情况相同的排列)。
在植树问题中我们可以把树苗和间距看作两种物体,先求出间距的个数,再利用一一间隔规律,算出树苗的棵数。
在爬楼问题中我们可以把楼层看着两端物体,把楼梯看做中间物体,再利用一一间隔规律,根据楼层求楼梯的层数。
《奥赛天天练》第25讲,巩固训练,习题1
【题目】:
有16个同学排成一排,要求每2名学生中间放2盆花,需要放几盆花?
【解析】:
16个同学排成一排,每两个同学之间有一个间隔,共有间隔:16-1=15(个)
每个间隔放2盆花,需要摆花:15×2=30(盆)。
《奥赛天天练》第25讲,巩固训练,习题2
【题目】:
某城市举行长跑比赛,从市体育馆出发,最后再回到市体育馆。全长42千米,沿途等距离设茶水站7个,求每相邻两个茶水站之间的距离。
【解析】:
从题目给出条件:“从市体育馆出发,最后再回到市体育馆。”可知这次长跑路线是个封闭图形,所以茶水站个数与茶水站之间的间距的个数是相同的。所以每相邻两个茶水站之间的距离是:
42÷7=6(千米)
《奥赛天天练》第25讲,拓展提高,习题2
【题目】:
小敏用同样的速度在校园的林荫道上散步,他从第1棵树走到第6棵树用了5分钟,当他走了15分钟时应到达地几棵树?
【解析】:
首先要让孩子弄清:在散步过程中,与时间有直接数量关系的是路程,也就是树的间距,而不是树的棵数。
走到第6棵树,走来5个间距,用了5分钟,每分钟的路程为1个间距:5÷(6-1)=1(个)。
走15分钟,共走了15个间距,到达第16棵树:15×1+1=16(棵)。
《奥赛天天练》第26讲,巩固训练,习题1
【题目】:
一根木料锯成4段用了6分钟,另外有同样的一根木料以同样的速度锯,18分钟可以锯几段?
【解析】:
首先要让孩子弄清:一、在锯木头的过程中,与时间有直接数量关系的是锯的次数和每次锯的时间,而不是锯的段数;二、木头锯成的段数总比锯的次数多1。
锯4段需要锯3次,锯一次的时间是:6÷(4-1)=2(分)。
18分钟可以锯的次数是:18÷2=9(次)。
18分钟可以锯的段数是:9+1=10(段)。
《奥赛天天练》第26讲,巩固训练,习题2
【题目】:
时钟6时敲了6下,5秒敲完。那么,这只钟12时敲12下,几秒敲完?
【解析】:
与时间有直接数量关系的是钟每敲两下之间的时间间隔。
时钟敲6下,有5个时间间隔共5秒,即每敲两下之间间隔1秒:5÷(6-1)=1(秒)。
时钟敲12下有11个时间间隔,需时间:(12-1)×1=11(秒)。
《奥赛天天练》第26讲,拓展提高,习题1
【题目】:
一个运动员参加马拉松赛跑,他从第1个茶水站跑到第4个茶水站共用了75分钟,已知从起点到终点每两个茶水站相距5千米(起点和终点都没有茶水站),他跑完全程共花了200分钟,问马拉松的赛程是多少千米?
【解析】:
从第1个茶水站到第4个茶水站中间有3个间隔,共用了75分钟,每跑一个间隔需要时间:75÷(4-1)=25(分钟)。
每两个茶水站相距5千米,即这个运动员25分钟跑了5千米。200分钟跑的路程也就是马拉松的赛程:200÷25×5=40(千米)。